Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review

نویسندگان

  • Shinya Aoi
  • Poramate Manoonpong
  • Yuichi Ambe
  • Fumitoshi Matsuno
  • Florentin Wörgötter
چکیده

Walking animals produce adaptive interlimb coordination during locomotion in accordance with their situation. Interlimb coordination is generated through the dynamic interactions of the neural system, the musculoskeletal system, and the environment, although the underlying mechanisms remain unclear. Recently, investigations of the adaptation mechanisms of living beings have attracted attention, and bio-inspired control systems based on neurophysiological findings regarding sensorimotor interactions are being developed for legged robots. In this review, we introduce adaptive interlimb coordination for legged robots induced by various factors (locomotion speed, environmental situation, body properties, and task). In addition, we show characteristic properties of adaptive interlimb coordination, such as gait hysteresis and different time-scale adaptations. We also discuss the underlying mechanisms and control strategies to achieve adaptive interlimb coordination and the design principle for the control system of legged robots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach

Insects exhibit adaptive and versatile locomotion despite their minimal neural computing. Such locomotor patterns are generated via coordination between leg movements, i.e., an interlimb coordination, which is largely controlled in a distributed manner by neural circuits located in thoracic ganglia. However, the mechanism responsible for the interlimb coordination still remains elusive. Underst...

متن کامل

Decentralized control mechanism underlying interlimb coordination of millipedes.

Legged animals exhibit adaptive and resilient locomotion through interlimb coordination. The long-term goal of this study is to clarify the relationship between the number of legs and the inherent decentralized control mechanism for interlimb coordination. As a preliminary step, the study focuses on millipedes as they represent the species with the greatest number of legs among various animal s...

متن کامل

A cerebellar approach to adaptive locomotion for legged robots

This paper describes a neural learning architecture for control of legged robots inspired by mammalian neurophysiology. Biological studies indicate that the cerebel-lum is a key part of an adaptive control system which enables mammals to display remarkable limb coordination during loco-motion. We present a distributed control system using reinforcement learning methods and mechanisms inspired b...

متن کامل

Locomotor Sub-functions for Control of Assistive Wearable Robots

A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legge...

متن کامل

Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study

Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the tre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017